Preparation and characterization of nanoscale LiVMoO₆ via softmechanochemical synthesis method

Margarita Milanova¹, <u>Reni Iordanova¹</u>, Yanko Dimitriev² and Krassimir L. Kostov¹

¹ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. *E-mail:* reni@svr.igic.bas.bg

² University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

This study is a continuation of our previous synthesis and structural characterization of lithium transitional-metal oxide LiVMoO₆, which recently attracted special attention as an electrode active material in rechargeable lithium ion batteries [1, 2]. Several methods for the LiVMoO₆ preparation are described in the literature, including solid state reaction and wet chemistry techniques (sol-gel, soft-combustion synthesis and rheological phase reaction). There is no data for the application of mechanochemical synthesis. Especially softmechanochemical synthesis method developed by Senna [3] posses some advantageous because highly reactive compounds containing oxygen-hydrogen groups are used as a precursors. A mixture of LiOH. H₂O, V₂O₅ and MoO₃ in 1:1:2 molar ratio of oxides were subjected to intense mechanical treatment in air for different periods of time using a planetary ball mill (Fritsch-Premium line-Pulversette № 7). Powder XRD data indicate the formation of a single phase LiVMoO₆ with brannerite-type structure after 30 min.milling time. The IR spectrum contains absorption bands characteristic for the Me₂O₈ (Me=V, Mo) units present in the crystal structure of LiVMoO6. TEM and XRD reveal that the as-obtained LiVMoO6 consists of crystallites mostly in the 25-50 nm size range with spherical shape. XPS analysis shows that LiVMoO₆ product contains vanadium and molybdenum ions in a higher oxidation state only - V^{+5} and Mo^{+6} , while the data of the EPR indicate the existence of traces of isolated VO^{2+} species in the as-prepared material.

References

1. M. Milanova, R. Iordanova, Y. Dimitriev, K. Kostov and S. Vassilev, J. Mater. Sci. 42 (2007) 3349.

- 2. C. Julien, Ionics, 6 (2000) 30.
- 3. M. Senna, Solid State Ionics 65-63 (1993) 3.

Acknowledgement

The study was performed with financial support of The Ministry of Education and Science of Bulgaria, The National Science Fund of Bulgaria, Contracts: TK-X-1718/07 and National Centre for New Materials UNION, Contract No DO-02-82/2008.