Mehanochemical Synthesis of Nanosized Li_{1+x}Co_{1-x}O₂

E. Grigorova, Ts. Mandzhukova, M. Hristov, R. Stoyanova and E. Zhecheva

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

In the last 15 years lithium cobaltate, $LiCoO_2$, has been considered as a material of great scientific importance due to its application as a cathode material in high-power lithium ion batteries. There are four structural modifications of $LiCoO_2$, the best electrochemical performance is established for $LiCoO_2$ with layered *O3*-type structure. Commercial $LiCoO_2$ consists of particles with dimensions of about 5 µm and displays a limited rate capability. To overcome this drawback, there is a need to elaborate specific methods for the preparation of nanosized $LiCoO_2$.

In this contribution we have studied the mechanochemical interaction of CoOOH and LiOH in order to prepare nanosized LiCoO₂ with a layered *O3*-type structure. The Li-to-Co ratio in the precursor mixture was varied from 1 to 2. The interaction of CoOOH and LiOH.H₂O was monitored by DTA and TGA analysis. XRD powder analysis, TEM and ⁶Li MAS NMR spectroscopy were used for structural characterization of lithium cobaltates.

The mechanochemical treatment of the CoOOH - LiOH mixture leads to a lattice expansion along the *c*-axis of the layered structure accompanied with a preservation of the intralayer distance between the metal ions. In addition, a partial transformation of CoOOH into lithium-containing Co_3O_4 spinel takes place. Thermal treatment at 400 °C yields *O3*-type LiCoO₂ with small amounts of spinel-type LiCoO₂ (less than 2 %). The spinel modification of LiCoO₂ is able to accommodate extra Li forming Li_{1+x}Co_{1-x}O₂ oxides with a Li-to-Co ratio higher than 1. The layered modification of LiCoO2 exhibits a Li-to-Co ratio equal to 1 and remains rigid with respect to the insertion of Li⁺ in the CoO₂-layers. Both phases display thin particles with sizes varying between 10 and 50 nm. There is no intergrowth between the two structural modifications.

Acknowledgments: Authors are grateful to the financial support from the National Science Fund of Bulgaria (IDEAS No D0-02-309/2008) and National Centre for New Materials UNION (Contract No DO-02-82/2008).